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Abstract

Haplotype networks are graphs used to represent evolutionary relationships between a set of taxa and are characterized by intuitiveness
in analyzing genealogical relationships of closely related genomes. We here propose a novel algorithm termed McAN that considers
mutation spectrum history (mutations in ancestry haplotype should be contained in descendant haplotype), node size (corresponding
to sample count for a given node) and sampling time when constructing haplotype network. We show that McAN is two orders
of magnitude faster than state-of-the-art algorithms without losing accuracy, making it suitable for analysis of a large number of
sequences. Based on our algorithm, we developed an online web server and offline tool for haplotype network construction, community
lineage determination, and interactive network visualization. We demonstrate that McAN is highly suitable for analyzing and visualizing
massive genomic data and is helpful to enhance the understanding of genome evolution. Availability: Source code is written in C/C++
and available at https://github.com/Theory-Lun/McAN and https://ngdc.cncb.ac.cn/biocode/tools/BT007301 under the MIT license.
Web server is available at https://ngdc.cncb.ac.cn/bit/hapnet/. SARS-CoV-2 dataset are available at https://ngdc.cncb.ac.cn/ncov/.
Contact: songshh@big.ac.cn (Song S), zhaowm@big.ac.cn (Zhao W), baoym@big.ac.cn (Bao Y), zhangzhang@big.ac.cn (Zhang Z),
ybxue@big.ac.cn (Xue Y).
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INTRODUCTION
Understanding how species evolve over millions of years requires
the processing of massive amounts of genomic data, which would
be a challenge without powerful bioinformatic tools. One of these

tools, haplotype networks, plays important roles in tracing the
evolution and migration of diverse species and is fundamental to
determine and visualize genealogical relationships of population
genomes [1, 2]. Over the past decades, several algorithms have
been proposed for haplotype network construction, including
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minimum spanning network (MSN) [3], median-joining network
(MJN) [3], Templeton Crandall and Sing algorithm (TCS) [4] and
randomized minimum spanning tree (RMST) [5]. These algorithms
have been applied to analyze a variety of genome sequences,
including virus genomes, human mitochondria [1], plant chloro-
plast [2] and mammalian Y chromosome [6]. Haplotype network is
extensively used in viral studies, with the aim to identify possible
transmission routes of viruses, including the virus responsible for
the ongoing COVID-19 pandemic [7–11].

Typically, these algorithms use a haplotype distance matrix
to construct network, which are crucial for inferring ancestry-
descendant relationships between haplotypes; however, they are
limited in many ways. First, they ignore several important fea-
tures when constructing haplotype network, such as sampling
time, number of sequences in haplotypes and mutation spec-
trum history, which can mislead the tracing of evolution/trans-
mission routes. Second, they generate undirected networks and
thus are unable to reflect the evolutionary directions of variants.
Third, running these algorithms is time-consuming and memory-
intensive. The time complexities of MSN, MJN and TCS are O(m2)
(worst case), O(n2.2) (average case) and O(m5) (worst case), respec-
tively, where m is the number of haplotypes and n is the number of
sequences (Supplementary Table S1). Therefore, these algorithms
are incapable of processing the massive datasets, such as the tens
of millions of SARS-CoV-2 sequences currently available. In prac-
tice, MJN takes more than three days to build haplotype networks
for 1000 SARS-CoV-2 sequences, mainly due to the calculation of
distance between any two haplotypes.

The visualization of haplotype networks is also vital for tracing
and analysis of the genealogical relationships. In recent decades,
various frameworks for network visualization have emerged. For
instance, igraph [12], Gephi [13], Pajek [14] and Tulip [15] pro-
vide network visualization services for desktop users, and WiGis
[16] for large graphs online. Furthermore, visualization platforms
specific for multi-dimensional biological data have also been
developed, such as Cytoscape [17], VisANT [18], PopArt [19], CoV
Genome Tracker [20] and TPD [21]. However, most of them are not
capable of fully supporting large-scaled genome data or dynami-
cally fine-tuning network layouts.

To address these issues, we proposed a new haplotype network
construction algorithm called Minimum-cost Arborescence Net-
work (McAN), which is designed to build a directed, rooted tree
spanning all vertices with minimum cost by taking into account
both genome-wide mutation spectrum features and epidemio-
logical characteristics, and is capable to run two orders of mag-
nitude faster than existing algorithms. Moreover, we developed
a web-based haplotype network visualization platform, which
integrates spatial–temporal information and supports determina-
tion of community lineage and interactive fine-tuning of network
layouts. We evaluated the performance of our algorithm and
platform on both simulated datasets and multiple real datasets,
which illustrated the advantage of McAN in analyzing and visual-
izing massive genomic data.

MATERIALS AND METHODS
Overview of the method
McAN was built based on minimum-cost arborescence for
haplotype network construction, a well-known graph theory
widely used in multiple applications. In McAN, haplotype network
is represented by a directed, rooted arborescence [22], in which
each haplotype is a cluster of identical sequences (with same
mutations after filtering), each edge reflects directed ancestor–
descendant relationship between haplotypes, and optimal

arborescence is determined by minimum distances of all summed
edges.

McAN factors in three features when constructing a haplotype
network, including mutation spectrum histories, sample sizes
and sampling times for every haplotype. Specifically, McAN takes
account of the mutation spectrum history of all samples and
assumes that mutations of an ancestral haplotype should be
inherited by its descendant haplotypes, and haplotypes with more
sequences should be more likely to be intermediate ancestor
nodes, due to a higher probability of propagating outwards of the
haplotypes with more sequences. If sampling time is available,
ancestral mutants are assumed to be earlier sampled than derived
mutants.

For convenience, these assumptions are summarized as the
following four criteria (Figure 1): (1) mutation spectrum history,
(2) large ancestry haplotype, (3) ancestry earlier sampling time
and (4) minimum evolution (ME). The last criterion means the
optimal haplotype network for a set of haplotypes is assumed
to be an arborescence whose sum of distances of all directed
edges is minimal [23]. We defined the distance between a pair
of haplotypes as the number of different mutations between two
haplotypes.

When all data including mutation and metadata are read by
McAN, pairs of accession ID and mutations for all sequences are
stored in a hash map, and sequences with the same mutations are
clustered into a group and regarded as a haplotype. The reference
sequence (users need to select the earliest high-quality sequence
as reference) is designated as the root node of the haplotype
network. Next, all haplotypes are sorted by mutation count and
sequence count in descending order and the earliest sampling
time (if available) in ascending order (Supplementary Figure S1A).
Based on this sorting, the closest ancestor is determined and min-
imized for each haplotype (Supplementary Figure S1B). To save
memory and running time, McAN calculates distances between
adjacent haplotypes instead of any two haplotypes (Supplemen-
tary Figure S1C). Then, the directed edges representing the can-
didate immediate ancestor–descendant relationships are estab-
lished under the constraint of the ‘mutation spectrum history’
criterion. The immediate ancestor–descendant relationships are
determined by the ‘minimum evolution (ME)’ criterion. In practice,
the haplotype networks may not be unique, so we propose the
‘large ancestry haplotype’ and ‘ancestry earlier sampling time’
criterion to determine, which one is the best among all haplotype
networks. In addition, we further paralleled the algorithm of
McAN to satisfy huge amount sequences data.

Detailed algorithm of McAN
Suppose there are m haplotypes, denoted by h0, h1, . . . , hm−1,
respectively. Let

V = {hi|i = 0, 1, . . . , m − 1} (1)

be the set of all haplotypes and Mi = {mut|mut = (pos, ref , alt)}
be the set of mutations in haplotype hi including all SNPs,
insertions and deletions, where pos ∈ Z+ represents the genomic
position of mutation mut and ref (alt) a reference (mutated)
nucleotide base or a sub-sequence of the reference (mutated)
sequence. Let hr be the haplotype containing the reference
sample. Obviously, the set of mutations Mr in haplotype hr is equal
to an empty set. According to the ‘mutation spectrum history’
criterion, the set of candidates of directed edges should then be

E = {eij = (hi, hj)|hi, hj ∈ V, Mi � Mj}, (2)

where eij is a directed edge from haplotype hi to hj, which also
be denoted as an ordered pair (hi, hj) or (i, j). Notice that, no
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Figure 1. Schematic illustration for haplotype network construction by McAN. To infer the genealogical relationship among multiple genomic sequences,
four criteria were adopted for haplotype network construction. Then, optimization problem was abstracted and the McAN algorithm was designed.
Furthermore, McAN tool and online webserver was developed to implement this algorithm. Finally, a haplotype network was constructed and visualized
interactively by McAN platform.

self-cycle belongs to set E. The distance between two haplotypes
hi and hj satisfying (hi, hj) ∈ E is

dij = |Mj| − |Mi|, (3)

where Mi and Mj are sets of mutations of haplotypes hi and hj,
respectively, | · | denotes the cardinality of a set. Let w1(·) be a cost
function (or weight function) on E,

w1 : E → Z+,
eij �→ dij.

(4)

By ‘minimum evolution (ME)’ criterion, the haplotype network
must be the minimum-cost arborescence of the weighted directed
graph G1 = (V, E, w1). Formally, the minimum-cost arborescence
problem can be represented as an integer programming problem:

min
xi j

∑
(i,j)∈E

dijxij,

s.t.
∑

i
xij = 1, ∀j ∈ V\r,∑

i,j
xij = m − 1,

xij ∈ {0, 1},

(5)

where xij, (i, j) ∈ E, are the decision variables, r is the index of
haplotype containing reference. If edge (i, j) is in the minimum-
cost arborescence, xij = 1, otherwise xij = 0. The first constraint

represents that the number of ancestors of haplotypes except for r
should be 1, and the second one represents that the total number
of edges in haplotype network must be m−1. Note that a decision
variable xij ∈ {0, 1} satisfies these two constraints if and only if
{eij|xij = 1, eij ∈ E} is a spanning arborescence of the unweighted
directed graph G = (V, E).

To deal with the minimum-cost arborescence problem (prob-
lem (5)), one should determine the root of arborescence, handle
directed cycles in graph and examine the uniqueness of the
solution. The root of minimum-cost arborescence is supposed to
be provide by the use, which is the haplotype hr containing the
reference sequence. The following Theorem 1 shows that there is
no directed cycle in G1.

Theorem 1. Let G = (V, E) be a directed graph, where V and
E is defined by Equations (1) and (2), respectively. Then,
there is no directed cycle in G.

Proof. Suppose for contradiction that there exists at least one
directed cycle in G. Then, let C = v0a1v1 · · · akvk be a directed cycle
in G, where v0, v1, · · · , vk ∈ V, a1, · · · , ak ∈ E, ai = (vi−1, vi) and
v0 = vk. And let M̃i be the set of mutations in vertex (or haplotype)
vi, for any i = 0, 1, · · · , k. By Equation (2), we have M̃i−1 � M̃i, i =
1, 2, · · · , k. Therefore, we obtain M̃0 � M̃k. However, M̃0 is equal
to M̃k since v0 is equal to vk. This is a contradiction. Hence, our
assumption that “there exists at least one directed cycle in G”
cannot be true. We thus have proved “there is no directed cycle
in G”. Q.E.D.
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However, the minimum-cost arborescence of G1, may not be
unique. Therefore, two other criteria are involved in to further
constrain possible solutions. If more than one haplotype exists
that is both closest ancestry of a given haplotype, then the hap-
lotype containing more sequences is chosen to be the ancestry
of the given haplotype by ‘large ancestry haplotype’ criterion. If
more than one haplotype exists that is both closest ancestry of a
given haplotype and is both meeting ‘large ancestry haplotype’
criterion, then the one meeting the ‘ancestry earlier sampling
time’ criterion is retained in the haplotype network. Formally, let
w2(·) be a cost function on E

w2 : E → Z2+ × {0, 1},
eij �→ (dij, zi, t̃ij),

(6)

where zi is the number of sequences in hi, t̃ij, (i, j) ∈ E, is defined as

t̃ij =
{

1, ti ≤ tj,
0, ti > tj,

(7)

representing whether edge (hi, hj) in E meet ‘ancestry earlier sam-
pling time’ criterion, ti is the sampling time of the ith haplotype
hi (which is defined as the earliest sampling time of sequences
in hi). Considering all the four criteria, the haplotype network is
a minimum spanning arborescence of G2 = (V, E, w2) with order
relation ≺, where order relation ≺ is defined on Z2+ × {0, 1} such
that for any a = (d1, z1, t̃1) and b = (d2, z2, t̃2) in Z2+ × {0, 1}, a ≺ b if
and only if d1 < d2 or (d1 = d2 and z1 > z2) or (d1 = d2 and z1 =
z2 and t̃1 ≥ t̃2). The overall optimization problem becomes

min
xij

≺
∑

(i,j)∈E
w2(eij)xij,

s.t.
∑

i
xij = 1, ∀j ∈ V\r,∑

i,j
xij = m − 1,

xij ∈ {0, 1},

(8)

where xij, (i, j) ∈ E, are the decision variables.
Optimization problem (8) is not a standard minimum-cost

arborescence problem with a numerical cost, but with a vectorial
cost. However, we can follow the framework of Chu-Liu-Edmonds’
algorithm [24, 25] to solve problem (8), although we cannot use
the algorithm directly. Specifically, we firstly find all the edges
in E, and calculate the distance for all edges in E. Next, we find
an edge (hj, hi), incoming to hi with the lowest cost (according to
relation ≺, and weight w2(·)) for each haplotype hi ∈ V\{hr}, where
hr represent the haplotype containing the reference, j = π(i) is
defined as

π(i) = arg min
j

≺ w2(eji). (9)

The pseudo-code of constructing haplotype network by follow-
ing the framework of Chu-Liu-Edmonds’ algorithm is represented
as Algorithm S1. The output A generated by Algorithm S1 must
be an optimum arborescence of problem (8). Chu-Liu-Edmonds’
algorithm takes the set of edges E and the weight of each edge
as input. However, the input of constructing haplotype network
are the mutations set, the sampling time and the number of
samples of each haplotype. If we directly use the framework of
Chu-Liu-Edmonds’ algorithm to solve the problem of constructing
haplotype network, the computation of determining if Mi � Mj for
each pair of (i, j) satisfying |Mi| < |Mj| cannot be saved. Meanwhile

the storage of the weight w2(eij) (that is dij and t̃ij in Algorithm S1)
of each edge in E cannot be reduced. Therefore, both best-case and
worst-case time complexity of Algorithm S1 are O(|V|2) and space
complexity of Algorithm S1 are O(|E|)

To reduce the time and space complexity of Algorithm S1, we
proposed McAN (Algorithm 1). McAN firstly sort all haplotypes
by the number of mutations and sequences in descending order,
and the earliest sampling time in ascending order. Haplotypes and
their mutation sets under the new order are denoted by {hs(i)} and
{Ms(i)}, i = 0, 1, . . . , m − 1, respectively, where s(i) is a permutation
of set {0, 1, . . . , m−1}. For each haplotype hs(i), its directed ancestor
hs(j)is determined by searching from j = i + 1 and finding the
smallest j satisfying Ms(j) � Ms(i), that is

π�(i) = min{j|Ms(j) � Ms(i), i+1 ≤ j ≤ m−1}, i = 0, 1, . . . , m−2. (10)

The pseudo-code of the proposed McAN is represented as
Algorithm 1, where sort is a sorting algorithms (sort generate the
permutation s(i) remaining {Mi}, {zi} and {ti} unchanged), and ≺
is an order relation defined on N × Z2+ such that for any a =
(|M1|, z1, t1) and b = (|M2|, z2, t2), a ≺ b if and only if |M1| >

|M2| or (|M1| = |M2| and z1 > z2) or (|M2| = |M2| and z1 = z2

and t1 ≤ t2). So, we have

(Ms(k), zs(k), ts(k)) ≺ (Ms(l), zs(l), ts(l)), 0 ≤ k ≤ l ≤ m − 1. (11)

The output A of Algorithm 1 is proved to be an optimal solu-
tion of problem (8) by Theorem 2 (Lemma 1–3 in the proof of
Theorem 2 is provided in the supplementary materials).

Algorithm 1. McAN

Input:
m, the number of haplotypes,
Mi, i = 0, 1, . . . , m − 1, the set of mutations in haplotype hi,
ti, i = 0, 1, . . . , m − 1, the sampling time of haplotype hi,
zi, i = 0, 1, . . . , m − 1, the number of samples in haplotype hi.

Output:
A, the minimum-cost arborescence, which is a set of edges.

Step 1 (sort all haplotypes by generating a permutation {s(k)})
{s(k)} ← sort({(|Mi|, zi, ti)}, ≺).

Step 2 (find minimum-cost arborescence A)
A ← ∅,
for each i from 0 to m − 2,

for each j from i + 1 to m − 1,
if | Ms(i) |
=| Ms(j)|, then

if Ms(j) � Ms(i), then
A ← A ∪ {(s(j), s(i))},
break,

end if, end if, end for, end for,
return A.

Theorem 2. The output A� of Algorithm 1 is an optimal
solution of problem (8).

Proof. First, we will show that A� is a feasible solution of prob-
lem (8). For each i = 0, 1, . . . , m − 2, by Lemma 1, we have
Ms(m−1) = ∅ � Ms(i). Therefore, for any i = 0, 1, . . . , m − 2
in step 2 of Algorithm 1, there exists at least one j, satisfying
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j > i and Ms(j) � Ms(i). Then the output of Algorithm 1 can be
represented as

A� = {(s(π�(i)), s(i))|i = 0, 1, . . . , m − 2}, (12)

where π�(i) is defined by Equation (10). Then we have

∑
(k,l)∈E

x�
kl = |A�| = m − 1,

and

∑
k

x�
kl =

{
1, l ∈ V\r,
0, l = r,

where x�
kl is the decision variable corresponding to A�, defined as

x�
kl =

{
0, (k, l) /∈ A�,
1, (k, l) ∈ A�,

r is the index of the haplotype containing reference. Thus, A� is a
feasible solution of problem (8).

Second, we will show that “the output A� of Algorithm 1 is an
optimal solution of problem (8)”. Let A be any feasible solution
of problem (8). Then, by the constraints of problem (8), A can be
represented as

A = {(s(ρ(i)), s(i))|i = 0, 1, . . . , m − 2}, (13)

where s(ρ(i)) is the unique ancestor of s(i), for any i = 0, 1, . . . ,
m − 2. Considering Equations (12) and (13), and Lemma 2, we have

w2(es(π�(i)),s(i)) ≺ w2(es(ρ(i)),s(i)), ∀i = 0, 1, . . . , m − 2.

By Lemma 3, we have

∑
j=0,1,...,m−2

w2(es(π�(j)),s(j)) ≺
∑

j=0,1,...,m−2

w2(es(ρ(j)),s(j)),

that is w2(A�) ≺ w2(A). Thus A� is an optimal solution of problem
(8). Q.E.D.

By sorting the haplotypes in step 1 of Algorithm 1, McAN avoids
the evaluation of the condition Mj � Mi for any i and j satisfying
π�(i) < j ≤ m−1, and avoids storing the edges set E and the weight,
including dij and t̃ij, of all edges in E. The complexity of McAN
depend on the selection of the sorting algorithms. If the quicksort
is used in Algorithm 1, the best-case time complexity is reduced
from O(|V|2) to O(|V| log |V|) and the space complexity is reduced
from O(|E|) to O(|V|) in Algorithm 1, compared with Algorithm S1.

Compared with the other haplotype network construction algo-
rithms, the worst-case time complexity of McAN is O(m2), which is
equal to the worst-case time complexity of MSN and smaller than
the time complexities of MJN (O(n2.2)) (average-case) [3] and TCS
(O(m5)) (worst-case) [26], where mis the number of haplotypes and
n is the number of sequences.

RESULTS
Performance testing on simulated datasets
We evaluated the accuracy of McAN by comparison with four
existing popular algorithms MSN, MJN, TCS and RMST on a simu-
lated dataset with 1001 sequences. We found that the AUC (area

Table 1. Evaluation of accuracy and memory cost on a simulated
dataset including 1001 sequences

Algorithms AUC Memory cost (KB)

McAN 0.997 5844
MSN 0.998 59 960
MJN 0.997 63 676
TCS 0.997 62 928
RMST 0.998 114 725

under the curve) of McAN, MSN, MJN, TCS, and RMST are 0.997,
0.998, 0.997, 0.997 and 0.998, respectively, showing that McAN is
as good as MJN and TCS, and is slightly lower than MSN and
RMST (Supplementary Figure S2A-E, Table 1). We also evaluated
the memory cost, and found that McAN consumed less than a
tenth of the memory of the other four algorithms. On a large-
scaled dataset including 20 001 sequences, the AUC of McAN
remains 0.997 (Supplementary Figure S2F).

Performance testing on real SARS-CoV-2 datasets
The running performance of McAN was tested using 1 124 837
SARS-CoV-2 genome sequences retrieved from RCoV19 [7, 8]
as of 26 July 2021 on a personal laptop (Intel Core i5-6200 U
CPU and 8GB memory running with Ubuntu 20.04 operating
system). We first established a small dataset by randomly
sampling SARS-CoV-2 sequences. When the number of sequences
ranges from 200 to 1000, McAN consistently obtained higher
efficiency, running about 1000 times faster than, TCS and MJN
and 100 times faster than RMST and MSN (Figure 2A). While on
a larger dataset with different sequence counts ranging from 100
thousand to one million, even when sequence count reaches 1
million, McAN required less than 20 minutes, demonstrating that
McAN is able to construct a haplotype network using large-scale
dataset.

Given that tens of millions of SARS-CoV-2 sequences are cur-
rently available, the performance of paralleled McAN was tested
on a server (2 Hygon C86 7185 32-core Processor, 512GB memory
with CentOS Linux release 7.4.1708 (Core) operating system) using
4 990 399 SARS-CoV-2 sequences from RCoV19 as of 20 April 2022.
When the number of threads ranges from 1 to 50, the running
time of paralleled McAN rapidly declined from 28 696.5 to 1511.9 s
(Figure 2B).

Performance evaluation using independent
datasets
Independent datasets are usually used to assess the performance
of a newly developed algorithm. Thus, we established two inde-
pendent datasets for SARS-CoV-2 [9, 27] and evaluated perfor-
mance of McAN. First, we tested on a real dataset of 482 SARS-
CoV-2 genome sequences including 72 isolated from the Dia-
mond Princess cruise and 410 from multiple countries/regions
globally as detailed in [9]. Unlike MSN, TCS and MJN algorithms,
McAN produced a direct evolutionary route from the reference
(MN908947.3) to the Diamond Princess cluster (Supplementary Fig-
ure S3). This result is in agreement with a finding that SARS-CoV-
2 dissemination on the Diamond Princess cruise is originated from
a single introduction event [9]. Moreover, the haplotype network
constructed by McAN using 130 major haplotypes of sublineages
of L and S lineages from 121 618 SARS-CoV-2 genomes [27] shows
a distinct delineation among these sublineages (Supplementary
Figure S4), suggesting that McAN is capable of accurately tracking

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/advance-article/doi/10.1093/bib/bbad174/7159163 by Institute of G

eneties and D
evelopm

ental Biology,C
AS user on 15 M

ay 2023

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad174#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad174#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad174#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad174#supplementary-data


6 | Li et al.

Figure 2. Running time for MJN, TCS, MSN, RMST and McAN. (A) Comparison of running time for MJN, TCS, MSN, RMST and McAN with the number of
sequences ranging from 200 to 1000 (single thread). (B) Running time of McAN with number of threads ranging from 1 to 50 for 4 990 399 sequences.

the evolution of SARS-CoV-2 during the development of the global
pandemic of COVID-19.

In addition to SARS-CoV-2, we further tested McAN on other
kinds of viruses including Monkeypox virus (MPXV) [28] and
human influenza A viruses [29]. The haplotype network of
monkeypox shows that most monkeypox samples collected in
2022 form a separate outbreak cluster except for two monkeypox
samples collected from the USA in 2022 (Supplementary
Figure S5A), supporting a previous study that 2022_FL001 and
2022_VA001 are unrelated to other cases occurring in 2022 in
the USA. While using human influenza A viruses in 1918, we
found that the main haplotype of these viruses consists of three
samples collected in Germany and five samples collected in the
USA (Supplementary Figure S5B). This finding strongly suggests
that no geographic segregation exists between Europe and North
America.

Web server guide and tools for haplotype
network construction
To enable scholars to use McAN regardless of their computational
skills, we established a free and user-friendly web server, which
is available at https://ngdc.cncb.ac.cn/bit/hapnet/. On the web-
server page, after a short introduction of the functions incor-
porated in McAN (Supplementary Figure S6), users can upload
the genomic variants data either in VCF or customized genovar
format, together with the corresponding metadata (Figure 3A). If
the genomic data are from SARS-CoV-2, users can easily combine
their data with a particular subset of SARS-CoV-2 sequences
and metadata in RCoV19 by setting sampling date or country,
or by sampling randomly. Next, users can filter sites by setting
a minimum mutation rate. Haplotype network of user provided
sequences will be constructed and community lineages will be
determined meanwhile by hierarchical agglomeration algorithm
[30] via McAN. The haplotype network results can be down-
loaded directly or viewed interactively in a viral haplotype net-
work viewer developed in-house (Figure 3B), or sent via email.

Because of the bottleneck of network transmission, webservers
cannot work when the number of inputted sequences is too
large. To allow users to run McAN locally, we also developed an
offline tool in C/C++ that can be freely downloaded from https://
ngdc.cncb.ac.cn/biocode/tools/BT007301 and https://github.com/
Theory-Lun/McAN. This tool supports input files in VCF format
as well as customized genovar formats, and generate output files

in TSV, JSON and GraphML formats, all of which are suitable for
visualization and publication.

Interactive web-based visualization platform for
haplotype network
We further developed an interactive web-based haplotype net-
work visualization platform to facilitate tracing the genealogy,
i.e. viral haplotype networks integrating spatial–temporal infor-
mation. The platform features four major interconnected panels,
each presenting spatial information, haplotype network, timeline
and concise meta information of sequences. In spatial panel,
it depicts colored circles that correspond to different locations,
mirroring the colors in the haplotype network graph. The size of
each circle reflects the number of samples in the current location,
relative to the overall sample size. While on the network, it can be
zoomed in and out and can be moved as a whole. Hovering over a
node provides cluster information, while dragging a node makes
it easier to observe and format. Clicking on a node highlights
both the node and its branch for focused analysis, and the map
and table dynamically update when nodes are clicked. For the
timeline, the visibility of nodes can also be adjusted by dragging
the timeline. With the ‘PLAY’ button, users can visualize how their
sequences evolve over time in various locations. (Figure 3C). Addi-
tionally, lineages of evolving clusters are analyzed simultaneously
and colored in different colors, which can be viewed by clicking on
the ’View group’ button (Figure 3D). All haplotype network figures
can be saved in PNG format. This platform is capable of displaying
networks with tens of thousands of nodes.

CONCLUSION AND DISCUSSION
This paper proposed McAN, a novel haplotype network con-
struction algorithm and platform based on minimum-cost
arborescence. McAN is capable for analyzing a large number
of sequences and helpful for molecular tracing of pathogens
for pandemics (e.g. COVID-19). McAN outperforms existing
algorithms and achieves higher accuracy and efficiency in
haplotype network construction by testing on multiple datasets.
Its visualization platform enables the display of a haplotype
network with tens of thousands of nodes across space and time,
which offers multiple panels that present different facets of
the network and remain synchronized while interacting. These
results strongly suggest that McAN is a desirable platform for

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/advance-article/doi/10.1093/bib/bbad174/7159163 by Institute of G

eneties and D
evelopm

ental Biology,C
AS user on 15 M

ay 2023

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad174#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad174#supplementary-data
https://ngdc.cncb.ac.cn/bit/hapnet/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad174#supplementary-data
https://ngdc.cncb.ac.cn/biocode/tools/BT007301
https://ngdc.cncb.ac.cn/biocode/tools/BT007301
https://github.com/Theory-Lun/McAN
https://github.com/Theory-Lun/McAN


McAN: a novel computational algorithm and platform for constructing and visualizing haplotype networks | 7

Figure 3. Web server for haplotype network construction. (A) Homepage of McAN’s web server, where users can upload their genome mutation data and
metadata, and set parameters to construct haplotype network online. (B) In-house developed haplotype network viewer, allowing users to interactively
view the haplotype network constructed by McAN. (C) In the haplotype network viewer, nodes of interested lineages can be highlighted. (D) Sequential
screenshots showing interactive functions, where network nodes can be hidden or make visible by dragging the timeline bar below the viewer page.
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analyzing massive dynamic data, especially SARS-CoV-2 datasets,
and will be beneficial to the study of genome evolution.

While McAN is clearly useful for constructing haplotype net-
work of viruses, it is limited in a number of ways. First, the muta-
tion spectrum history (mutations in ancestry haplotype should
be contained in descendant haplotype) implies that McAN cannot
detect any reverse mutations, which have been occurred in SARS-
CoV-2 [31]. Second, we used arborescence to represent a haplotype
network and therefore McAN cannot detect any recombination,
which have been reported in the Omicron variant of Covid-19 virus
[32, 33]. Third, the preprocessing of sequences and selection of
root might affect the edges of the haplotype network constructed
by McAN. User should use a high-quality sequence as the refer-
ence. If the quality of reference is low; i.e. the length of sequence
is short or the number of ambiguous nucleotides is large, the
accuracy of mutation detection may decrease. This will further
affect the accuracy of haplotype network. In addition, we advise
choosing the earliest sequence as reference. If a relatively late
sequence is used as reference, the direction of edges in haplotype
network may not reflect the direction of evolution correctly.

Key Points

• Minimum cost arborescence network (McAN) algorithm
constructs haplotype network by considering mutation
spectrum history, node size and sampling time simulta-
neously.

• McAN platform provides a user-friendly web server as
well as an offline tool, allowing users to construct hap-
lotype network, detect lineages and visualize the results
interactively online.

• McAN is capable to build haplotype network for millions
of sequences data with high accuracy and efficiency
(about 20 minutes for millions of sequences using one
to fifty threads).

• McAN is helpful for the molecular tracing of pathogens
for pandemics and is beneficial to deepening the under-
standing of viruses including but not limited to SARS-
CoV-2, Monkeypox virus and human influenza A viruses.

SUPPLEMENTARY DATA
Supplementary data are available online at https://academic.oup.
com/bib.
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