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Abstract

In flowering plants, anthers bear male gametophytes whose development is regulated by the elaborate
coordination of many genes. In addition, both gibberellic acid (GAs) and jasmonic acid (JA) play
important roles in anther development and pollen fertility. To facilitate the analysis of anther development
genes and how GAj; and JA regulate anther development, we performed microarray experiments using a
10-K ¢cDNA microarray with probes derived from seedlings, meiotic anthers, mature anthers and GA;- or
JA-treated suspension cells of rice. The expression level change of 2155 genes was significantly (by 2-fold or
greater) detected in anthers compared with seedlings. Forty-seven genes, representing genes with potential
function in cell cycle and cell structure regulation, hormone response, photosynthesis, stress resistance and
metabolism, were differentially expressed in meiotic and mature anthers. Moreover, 314 genes responded to
either GA; or JA treatment, and 24 GA;- and 82 JA-responsive genes showed significant changes in
expression between meiosis and the mature anther stages. RT-PCR demonstrated that gene y656d05 was
not only highly expressed in meiotic anthers but also induced by GAj. Strong RNA signals of y656d05 were
detected in pollen mother cells and tapetum in in situ hybridization. Further characterization of these
candidate genes can contribute to the understanding of the molecular mechanism of anther development
and the involvement of JA and GAj signals in the control of anther development in rice.

Abbreviation list: EST, expressed sequence tag; GAs, gibberellic acid; JA, jasmonic acid; RT-PCR, reverse
transcription-polymerase chain reaction

Introduction generations. The stamen is the male reproductive
organ, consisting of an anther where the male
The life cycle of flowering plants alternates between gametophyte develops and a filament that provides

the diploid sporophyte and haploid gametophyte water and nutrients to the anther. In general,
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anther development is divided into two phases
(Goldberg et al., 1993; Zhao et al., 2002). During
phase I, anther structure is established including
the differentiation of different cells types. One key
event during phase I is meiosis of pollen mother
cells. During phase II, microspores develop into
pollen grains, and anthers dehisce to release pollen
grains. Anther development involves cell division,
cell differentiation and cell death. Many genes
contribute to anther development, although only a
small number are known to be specifically involved
in this complex developmental process (Klimyuk
and Jones, 1997; Kapoor et al., 2002).

Many studies have identified and characterized
genes regulating anther development. In Brassica
napus, the expression of I3, designated an ‘early’
stage gene, reaches its highest level during meiosis
and decreases as anthers matured (Roberts et al.,
1991). Some ‘late’ stage genes such as NTP303 and
Bcepl were detected at their highest expression level
in mature anthers (Theerakulpist et al., 1991;
Weterings et al., 1992). Silencing studies revealed
that NTP303 plays roles in pollen tube growth (de
Groot et al., 2004). Moreover, anther and/or tape-
tum-specific genes were also isolated from Arabid-
opsis (Rotman et al., 2005), maize (Lauga et al.,
2000) and tobacco (Cecchetti et al.,2004). Recently,
molecular approaches have facilitated the definition
of genes with function in anther cell patterning
(Walbot and Evans, 2003). In Arabidopsis, the SPL/
NZZ gene is required for tapetum and microsporo-
cyte formation (Yang et al., 1999). Both EMSI/
EXSI and TPDI regulate tapetal cell fate determi-
nation (Zhao et al.,2002; Yang et al.,2003). In rice,
MSPI gene plays a role similar to EMSI1/EXSI in
anther development (Nonomura et al., 2003).

Meiosis occurs in anther development. Many
genes are involved in a wide range of meiotic
processes such as chromosome cohesion and
condensation, recombination, synapsis, segrega-
tion and cell cycle regulation (Higgins et al., 2004).
Considering the complexity of anther develop-
ment, it is necessary to discover additional genes
that are essential for anther development. Studies
have also been performed to identify genes regu-
lating anther development on a larger scale,
particularly with the application of microarray
techniques. Early in the 1990s, genes involved in
microspore development were isolated through the
screening of specific cDNA libraries that were
generated from sorted cells by flow cytometry

during microsporogenesis (Mascarenhas, 1990).
Using subtractive hybridization, 13 anther-specific
genes were isolated from Arabidopsis (Rubinelli
et al., 1998). Many more genes were found to be
associated with flower development from expres-
sion studies involving microarray techniques
(Hennig et al., 2004; Wellmer et al., 2004). How-
ever, the functions of most of these genes remain
unknown. Furthermore, it is not clear how these
genes are related to anther development.

Both gibberellic acid (GA3) and jasmonic acid
(JA) play important roles in anther development
and pollen fertility. Studies showed that GAj;
promotes the formation and release of mature
pollen grains (Goto and Pharis, 1999; Swain et al.,
2004). Further studies revealed that GA3 controls
cell elongation of stamen filaments and the for-
mation of mature pollen grains (Cheng et al.,
2004). JA and JA signaling are required for pollen
development and anther dehiscence. JA-insensitive
mutant coil is male sterile and JA synthesis-
deficient mutants are defective in anther dehis-
cence (Zhao and Ma, 2000). Twenty-five
JA-regulated anther-development genes were
detected in Arabidopsis by differential display
(Mandaokar et al., 2003). However, our under-
standing of the molecular mechanism of GA and
JA signaling in anther development is scant. With
the completion of the whole-genome sequencing,
rice, a major crop of the world, has become a
model plant organism for addressing both funda-
mental and applied questions in plant sciences.

To better understand how genes control anther
development at the genome level, we compared
gene expression patterns in rice anthers at different
developmental stages using a 10-K ¢cDNA micro-
array (Lan et al., 2004). We also profiled gene
expression pattern with GAj; or JA treatment of
suspension-cultured cells from rice. A comparison
of mature anthers and seedlings revealed 2155
genes with 2-fold or more change in expression.
Forty-seven genes were differentially expressed in
meiotic anthers and mature anthers. Moreover,
among the 314 genes responding to GAjz or JA
treatment, 24 GAj3- and 82 JA-responsive genes
showed more than 2-fold expression changes in
meiosis compared with at mature anther stages.
Our results could contribute to further character-
ization the function of genes and dissection the
roles of JA and GAj; signaling in rice anther
development.



Materials and methods
Plant materials

Rice (Oryza sativa L. ssp. japonica cv Zhonghua
10) seeds were germinated once a week for 5 weeks
to continuously provide enough plants for anther
isolation. Before being transplanted to the field,
some of the 2-week-old seedlings were harvested
for RNA extraction. In general, anthers at the
meiotic stage (meiotic anthers) were dissected from
rice flowers when the distance between the last two
leaf collars was within 2 cm (-1 cm to +1 cm)
(Figure 1A, Chen et al., 2005). When the collar of
the flag leaf reached the collar of the penultimate
leaf, the upper-middle, middle and lower florets of
the spike were dissected from plants to determine
the developmental stage of the anthers. In one
spike, meiotic anthers were from florets growing
adjacent to and with a similar length as florets
containing meiotic anthers determined according
4’-6-diamidino-2-phenylindole (DAPI) staining.
Meiotic anthers were collected for RNA prepara-
tion (Figure 1B—G), while anthers with obvious
pollen were harvested right before anthesis and for
RNA extraction of mature anthers (Figure 1H).

Chromosome observation
To determine the developmental stages of rice

anthers, anthers were dissected from fresh rice
florets and then stained with DAPI (1 pg/ml) for
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3-5 min on a microscope slide. Coverslips were
tapped to squash the anthers and release their
content. Chromosomes were observed under a
fluorescence microscope (Zeiss, Germany) (Park
et al., 1998).

Suspension cell culture

Rice calli were cultured in Ny liquid medium (Chu
et al., 1975) containing 2,4-D (1 mg/l) in a rotary
shaker at 150 rpm at 25 °C for 4 weeks with the
medium refreshed every week. Then the suspen-
sion cells (0.15 g/ml) were treated with 10 uM JA
(Sigma, St. Louis, MO, USA) or GA; (Sigma) for
5 and 4 h, respectively. The JA- or GA;-treated
cells and untreated cells were filtered through a
2 x 2 mm? sieve. The cells passing through the
sieve were collected and used for RNA extraction.

RNA preparation

Total RNA was extracted with Trizol reagent
(Invitrogen, Carlsbad, CA, USA) from the meiotic
anthers, mature anthers and rice suspension cells,
including untreated controls and those treated
with GA; or JA. The quality of total RNA was
examined with use of a DU 640 Nucleic Acid &
Protein Analyzer (Beckman Coulter Inc., Fuller-
ton, CA, USA). Total RNA at a ratio of OD»g4, to
OD»gy > 1.8 was further used to prepare mRNA
with use of an mRNA Extraction Kit (Qiagen,
Valencia, CA, USA).

Figure 1. The developmental stages of rice anther (Chen et al., 2005). (A) The location of rice flag leaf when meiosis occurs in
anther (FL: flag leaf. FLC: flag leaf collar. 2nd LB: the second leaf blade. 2nd LC: the second leaf collar). (B)—-(G) Meiosis stages
in rice anther. Anthers in the selected stages were stained with DAPI (1 ug/ml) and images were acquired under a fluorescence
microscope (Zeiss, Germany). (B) Pachytene. (C) Metaphase 1. (D) Telephase 1. (E) Interkinesis. (F) Metaphase II. (G) Telophase

II. (H) Mature pollen grains just before anthesis.
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Probe labeling, microarray hybridization,
scanning and data acquisition

One microgram of Poly (A") RNA was labeled
with the fluorescence dye Cy3 or Cy5 according to
instructions for the CyScribe™ Post-Labeling Kit
(Amersham Biosciences, San Francisco, CA,
USA). Purification, hybridization and washing
were performed according to the manufacturer’s
instructions. Hybridized slides were scanned with
use of a GenePix 4000B scanner (Axon Instruments
Inc., Union City, CA, USA) at 532 and 635 nm to
capture the emission of Cy3 and Cy5, respectively.
The intensity of each spot at the two wavelengths
was transformed into the ratio value by use of
GenePix 4.0 software. The overall intensity of the
hybridized slide was then normalized by GenePix
4.0 software. Spots automatically flagged ‘Bad’ or
‘Not Found’ by the software and whose [media of
signal (S)/media of background (B)] <4 were
discarded (Lan ef al., 2004). Thus, only the spots
whose signal intensity was at least 4-fold higher
than the background were further analyzed. In
addition, we ruled out those spots whose regulation
pattern was contradictory in two no-dye-exchange
replicates. Only data with |[Log, ratio |>1 in all four
replicates were subjected to further clustering
analysis with us of software from Stanford Uni-
versity (http://rana.lbl.gov/EisenSoftware.htm).

Gene annotation and promoter analysis

Using BLAST search program, we annotated all
ESTs encoding about 10 000 genes. Three major
rice databases were used for both BLASTn and
BLASTp analysis: NCBI (http://www.ncbi.nlm.-
nih.gov), TIGR rice genome project (www.Ti-
gr.oorg) and GRAMENE (www.gramene.org).
Genes were assigned only when their annotations
from at least two of the three databases were
consistent with each other. Whereas, cDNA
sequences without alignment to any known gene
of the three databases were sorted as putative genes,
unknown genes or no hits (no significant homol-
ogy). In addition, based on gene location informa-
tion from TIGR database, a 2.0-kb sequence
upstream of the 5 UTR was found from GRAM-
ENE as a putative promoter region. Then the
2.0-kb sequence was analyzed to search GAj;- or
JA-responsive elements by use of PlantCARE soft-
ware (http://intra.psb.ugent.be:8080/PlantCARE).

Reverse transcription-polymerase chain
reaction (RT-PCR)

To verify the reliability of the microarray and
further study gene expression patterns, RT-PCR
was conducted with use of One Step RNA PCR
Kit (AMV) (TaKaRa, Japan) with gene-specific
primers designed by Primer 5.0 and synthesized by
Sangon Company (Shanghai, China) (Table 1).
Total RNA for RT-PCR was extracted from
materials used for microarray. Rice tubA gene
(gi:1136119) was used as a control (Table 1).

To investigate the expression pattern of gene
y656d05, 3-week-old rice seedlings were treated for
24 h with 1072, 107*, 107>, 107 or 1077 M of GA;
and then harvested for RNA extraction. Seedlings,
roots of 3-week-old plants, shoots, leaves of
mature plants, spikes, meiotic anthers and mature
anthers were also collected from untreated plants
for RNA extraction. RT-PCR results were quan-
tified and standardized by comparing the intensity
of tubA with tested genes by use of BIO-1D
software (Vilber Lourmat, France).

RNA in situ hybridization

For RNA in situ hybridization of gene y656d05, a
probe containing a direct repeat of a 150-bp gene-
specific fragment was constructed into pGEM-T-
Easy vector. Use of isocaudarners, including Nhel
and Spel, and Xhol and Sa I, allowed for the
introduction of Nhel and Xhol, respectively, into
the ends of gene-specific primers (Wang et al.,
2004). Plasmid DNA was linearized by use of Ndel
and EcoRI and then transcribed in vitro with T7
and SP6 RNA polymerase, respectively. The 500-
bp RNA transcript corresponding to the T7
direction was used as a sense probe, while the
SP6 transcript was used as an anti-sense probe.
In situ hybridization was carried out as described
(Xu et al., 2002b). Images were observed and
captured by microscopy (Zeiss, Germany).

Results

The reliability of cDNA microarray in profiling
gene expression during anther development

To minimize the false-positive results in our
microarray experiment, we performed at least four
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replicates including two dye-exchange replicates
with RNA extracted independently from different
batches of plant materials. The distribution of all
ESTs showed an overall balance of the two dyes in
one hybridization (Figure 2A), and the expression
level changes of genes detected from two replicates
were superimposed (Figure 2B). Moreover, the
correlation coefficients among the four replicates
using one probe, for example hybridization with
probes synthesized by meiotic anthers, ranged
from 0.78 to 0.93 (Table 2), which suggests that
the microarray hybridization results are generally
producible.

To verify the results from microarray analysis,
we performed RT-PCR on 16 randomly selected
genes using gene-specific primers to examine their
expression level changes (Table 1). The expression
pattern of all 16 genes was similar to that from
microarray analysis (Figure 3A and Table 1), as
indicated by a high degree of concordance

(R=0.9872) between the two methods
(Figure 3B). Furthermore, in our microarray data,
four randomly scattered cDNAs showed a similar
expression pattern (Figure 3C), which is consistent
with three of the cDNAs representing the same
gene and the fourth encoding a similar protein. In
summary, our results from the microarray exper-
iments are reliable.

Expression profiling of genes potentially involved
in rice anther development

To analyze predicted biochemical function of
genes involved in rice anther development, we
compared gene expression between anthers in
meiosis and anthers just before anthesis. In this
study, the developmental stages of anther were
examined by the observation of chromosome
behavior using DAPI staining. The anthers under-
going meiosis were first decided by the distance

(A) w

Anther in meiosis Cy5

0 0 a0 o0 D 1000 40D MO0 EOD0 M0N0 o0 1o
FEYS Mackar

(B)

Logz Ratio of replicate 1

Mature anther Cy3

Ll:lg1 Ratio of replicate 2

Figure 2. Reliability of the microarray experiment. (A) Distribution of about 10 000 genes in one hybridization. (B) Reproducibi-
lity analysis according to the ratio of the replicates with Ma-Cy3 and Am-CyS5.
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Table 2. Correlation coefficient from four replications of Am vs. Ma® hybridization.

Am-Cy5 Am-Cy5 Am-Cy3 Am-Cy3

Ma-Cy3 (1)° Ma-Cy3 (2) Ma-Cys5 (1) Ma-Cy5 (2)
Am-Cy5 vs. Ma-Cy3 (1)° /¢ 0.9300 0.8000 0.8130
Am-Cy5 vs. Ma-Cy3 (2) 0.9300 / 0.7754 0.8000
Am-Cy3 vs. Ma-Cy5 (1) 0.8000 0.7754 / 0.8737
Am-Cy3 vs. Ma-Cy5 (2) 0.8130 0.8000 0.8737 /

% Am: anthers in meiosis (meiotic anthers). Ma: mature anthers. Cy3: Cy3-dUTP. Cy5: Cy5-dUTP.

(1) & (2) represent replicate 1 and replicate 2, respectively.
¢ the same slide.

between the last two leaf collars and then
confirmed by their chromosome features in meiosis
(Figure 1) (Chen et al., 2005).

Comparing gene expression between mature
anthers and seedlings revealed that 2155 genes
with a 2-fold or more changes. Furthermore, 47
genes showed expression changes between meiotic
anthers and mature anthers, suggesting that they
might be involved in male meiosis (Table 3 and
Figure 4). These 47 genes, representing 0.47% of
the 10 000 genes in the microarray, were divided
into 6 main groups based on their potential
functions: cell cycle and cell structure, hormone,
photosynthesis, carbohydrate metabolism, stress
and transportation (Table 4). Among the 47 genes
y692f03 (BX900363), y638f01 (CR289672) and
y759c09 (BX898653) could play some roles in
meiosis based on the characteristics of their
encoding proteins (Pavlova and Zakiian, 2003;

(A) y638M1

Y657f05  p689d12  y638h03  y630g09

Prigent and Dimitrov, 2003; Strunnikov, 2003).
Interestingly, most of these anther development-
related genes belong to metabolism or unknown
protein group, accounting for 36.2% and 19.1% of
the 47 genes, respectively.

Identification of anther development genes
affected by GA; or JA

Both GA; and JA are important for anther
development and pollen fertility in variety of plant
species (Cheng et al., 2004; Kaneko et al., 2004).
To investigate the role of GA3 and JA in anther
development genome wide, we examined gene
expression of suspension cells treated with 10 uM
GA; or JA. A total of 88 genes showed response to
GA; treatment and 248 to JA treatment, repre-
senting 314 genes and 3.14% of genes of the array
(Table 3). Among them, 24 GA;z- and 82

p629ell  y697f12

m‘l\m Ma Am Ma ‘Nn Ma Am Ma

y775f07  y827cll  y812ell)

CK GA CK

(B)

y=0.7262 X + 0.2041 3
R=0.9872 2
1

£ 5 4 3 2
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(— |
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Am Ma Am Ma
p8O3al8  y6l601  y679c01
ESTs
= rubuin

GA CK GA JA CK JA CK JA CK JA CK JA CK

PhETe18 (AR08,

2 rtalisiblenris Shr prodria) 35
184
14 nd
144
7 74 “
¥ el oln n
Am Ma JA GA Am Ma JA GA
peasan (AR, YIRS (AKIBATI,
36 10 it prateiy
% s
6
u ‘ H
& 2
¢ n L0 [l
Am Ma JA GA Am Ma JA GA

Figure 3. The reproducibility of microarray experiment assessed by RT-PCR. (A) Expression pattern of the 15 randomly selected
differentially expressed genes by RT-PCR. (B) Correlation analysis of the ratio of differentially expression level from microarray
experiment to that from RT-PCT. (C) Similar expression pattern of four randomly scattered genes encoding the same category of
proteins. Y-axis represents the ratio in hybridization; ID of ESTs, their accession number and the corresponding putative proteins
are on the top of each panel. Am: anthers in meiosis (meiotic anthers); Ma: mature anthers; JA: jasmonic acid treatment; GAj3:

gibberellin treatment; CK: no treatment control.
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JA-responsive genes showed 2-fold more expres-
sion changes between meiotic anthers and mature
anthers (Figure 5). Fifteen of them have been
identified as possibly involved in anther develop-
ment (Table 5). Moreover, 12 of the 23 genes
responsive to both GA3 and JA displayed expres-
sion changes during anther development. Whereas,
only 1 anther-preferential gene exhibited a similar
expression pattern after treated by GA; or JA
(Figure 5). In addition, clustering analysis of the
314 genes demonstrated that anther development-
related genes responded differently to the 2 hor-
mones (Figure 6). Therefore, our results suggest
that GAs and JA could function in anther devel-

opment, although most anther development in-
volved genes possessed different expression
patterns in GA; and JA treatments.

To seek additional evidence that these genes are
responsive to GA; and/or JA treatments, pro-
moter analysis was performed with PlantCARE
(http://intra.psb.ugent.be:8080/PlantCARE). Stu-
dies revealed that TGACG or CGTCA is MeJA-
responsive elements in Hordeum vulgare and
CCTTNNN or TATCNNN is gibberellin-respon-
sive elements in Oryza sativa (Mason et al., 1993;
Gomez-Maldonado et al., 2004). Our promoter
analysis showed that 56.5% and 61.4% of JA- or
GAj;-responsive genes detected in the microarray

Table 3. Number of genes differentially expressed in microarray hybridizations.

Plant part and treatment Up-regulated genes Down-regulated genes Up/down Percentage
2-3 3-5 >5 2-3 3-5 >5

Ma/Se 607 426 640 282 119 81 1673/482 21.6

Am/Ma 16 13 4 9 5 0 33/14 0.5

GA;/CK 54 14 1 6 13 0 69/19 0.9

JA/CK 46 45 23 74 40 20 114/134 2.5

Numbers in the table represent the number of genes detected as differentially expressed in the microarray hybridizations. Ma: mature
anthers. Se: seedling. Am: anthers in meiosis. GA3: GAj-treatment. JA: JA-treatment. CK: suspension-cultured rice cells of wild type.
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Figure 5. Analysis of the overlap between hormone-responsive genes and anther development genes. Numbers in brackets represent

genes differentially expressed.

contained corresponding regulatory elements in
their 2.0-kb putative promoter regions. The number
of these elements varied from 2 to 7 (Table 6). In
addition, related elements were also found in the
promoter of 54.5% genes regulated by both GAj;
and JA (Table 6).

Gene y656d05 is a potential anther development
gene and also up-regulated by GA;

Microarray data showed that gene y656d05, encod-
ing a putative GAST-like protein, was preferen-
tially expressed in meiotic anthers (Table 4). RT-
PCR revealed that the expression level of y656d05
was higher in meiotic anthers than in seedlings,
roots, shoots, leaves, spikes and mature anthers
(Figure 7A and B), thus confirming the microarray
result that the expression of y656d05 was increased
in meiotic anthers (Table 4). To examine the
expression of y656d05 and investigate its function
in anther development, we carried out in situ
hybridization. The y656d05 RNA signal was highly
present in pollen mother cells and tapetum of
anthers (Figure 8). Thus, y656d05 might be in-
volved in anther development, probably in meiosis.

Our microarray data also showed that y656d05
was responsive to GAj treatment. To further study
its response to GA; treatment, we performed
RT-PCR using RNA from seedlings treated with

a serial concentration of GA5 (0, 1077, 107°, 107>,
107* and 107> M). The y656d05 expression was
slightly increased with the increase of GAj; con-
centration (Figure 7C and D). In summary,
y656d05 identified by our microarray analysis is
a potential anther development gene and also
affected by GAs.

Discussion

Genes involved in anther development
with various known functions

Anther development is a complex process, which is
unique in producing male gametophytes in higher
plants (Armstrong and Jones, 2003). Our micro-
array experiment using probes synthesized from
mature anthers and seedlings found that 2155
differentially expressed genes, which represent
approximately 21.6% genes of the array. Among
them the expression of 47 genes in meiotic anthers
changed their level 2-fold or more compared to
their expression in mature anthers.

Anther development is required for anther-
specific genes and the cooperation of genes that are
essential for reproductive and vegetative develop-
ment. Among the 47 genes detected as important
for anther development, 10 genes involve in cell
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Figure 6. Hierarchical clustering of 314 genes differentially expressed. Genes with more than 2-fold change were selected in at least
1 comparison. The amount of change represents Log, Ratio and the result was from an average hierarchical clustering. As shown
in the color scale, genes up- or down-regulated are in red and green, respectively. Gray represents missing values. (A) Sub-cluster
illustrates some anther-preferential genes with decreased expression in meiosis; (B) sub-cluster exhibits the anther-preferential genes
up-regulated in meiosis; (C) sub-clusters are vegetative organ-preferential genes down-regulated in meiosis. J: JA-regulated genes;
G: GAj-regulated genes; M: genes differentially expressed in mature anthers compared with seedlings; A: genes differentially

expressed in meiotic anthers.

division or anther development (Table 4). Some of
these genes also showed a high transcription level
during pollination and fertilization in rice (Lan
et al., 2004). The SMC (Structural Maintenance of
Chromosome) protein are crucial for chromosome
cohesion and condensation in both mitosis and
meiosis (Strunnikov and Jessberger, 1999; Pavlova
and Zakiian, 2003). Rice SMC protein detected
here is highly homologous to SMC proteins in
Arabidopsis (Table 4). Its high expression in mei-
otic rice anthers suggests that it might play some
roles in chromosome cohesion or condensation in
meiosis. Anther development is also involved in an
active stage of protein and lipid metabolism for
pollen wall formation. The 40.4% genes with
predicted functions in carbohydrate, protein and

lipid metabolism suggest that they may play roles
in pollen wall formation. Moreover, 19.2% genes
encode proteins responsive to environmental
factors (Table 4). This might result from the fact
that anther development is an environment sensi-
tive process (Dix et al., 1996). Functional studies
of genes detected from our genome wide screening
should further our understanding of anther devel-
opment in rice.

GA; and JA might play different roles in rice
anther development

Plant hormones, such as GA; and JA, are critical
for anther development (Zhao et al., 2003; Cheng
et al., 2004). In our genome-wide screening, 314
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Table 6. Analysis of regulatory elements in the promoter of phytohormone-regulated ESTs.

Average No. of Percentage

elements in one

No. of ESTs with
regulation elements

Organism

Element sequence

Element in promoter

No. of genes

promoter + SD

56.50
61.40

4.74+£2.54
4.59 £2.81

140

Hordeum vulgare

TGACg (CGTCa)

MeJA-responsiveness

248

JA-responsive ESTs

54

Oryza sativa
Hordeum vulgare

CCTTNNN (TATCNNN)
TGACg (CGTCa)

gibberellin-responsive element

MeJ A-responsiveness

88

GA;-responsive ESTs

54.50

4+3.07

12

Oryza sativa

CCTTNNN (TATCNNN)

gibberellin-responsive element

23

ESTs regulated by
JA and GA;

genes exhibited responsiveness to GA; or JA
treatment. Some of these hormone-responsive
genes were also detected in an array of rice calli
treated with GA; (Yazaki et al., 2003). Among the
hormone-regulated genes detected here, approxi-
mately 29.9% genes were differentially expressed in
anther development (Figure 5). Meanwhile, about
4.4% anther development-related genes were
affected by GA; or JA. Some of these genes have
been identified and found to be involved in anther
development (Table 5). For example, pollen tube
elongation requires EX PB4, which can loosen cell
walls by weakening glucan—glucan binding
(Cosgrove et al., 2002), while aquaporin-related
genes regulate pollen development (Ikeda et al.,
1997). Recently, more evidence supports the
involvement of GA3 and JA in anther development
(Table 5) (Park and Lord, 2003; Prigent and
Dimitrov, 2003; Weingartner et al., 2003; Lan
et al., 2004).

Although both GAj and JA are important for
anther development, they may play distinct roles.
GA; is found to regulate the development of both
male and female organs in plants (Huang et al.,
2003), while JA regulates anther dehiscence and
late pollen maturation (Devoto et al., 2002; Xu
et al., 2002a). In our array, 12 anther develop-
ment-related genes were found to respond to both
GAj; and JA treatments. Among them, only one
showed the same regulation pattern in the two
hormone treatments, while no overlap of other
genes was detected. Moreover, clustering analysis
suggested that most anther development involved
genes responded differently to the two hormone
treatments (Figure 6). Therefore, we propose that
GA; and JA may play different roles in rice anther
development.

Gene y656d05 (BX901779) is possibly involved
in meiosis

Sequence analysis showed that gene y656d05
belongs to genes assigned as GAj-stimulated
transcripts (GAST). RT-PCR analysis confirmed
our microarray result that y656d05 was slightly
up-regulated by GAj; treatment (Figure 7B), which
is similar to the expression pattern of the family
members in Arabidopsis and Petunia (Aubert
et al., 1998; Ben-Nissan et al., 2004). Moreover,
studies on GIP, a GA; response marker gene from
GAST family of Petunia, indicated that GIP was
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Figure 7. Expression pattern of gene y656d05 by RT-PCR. (A) Expression pattern of gene y656d05 in seven different rice organs;
(B) Diagram corresponding to quantified A; (C) Expression pattern of gene y656d05 in GAj-treated rice seedlings; (D) Diagram

corresponding to quantified C.

(A)

Figure 8. RNA in situ hybridization of y656d05 in anthers. Rice florets during meiosis were used to detect the expression of
y656d05. (A) Longitudinal section of floret hybridized with sense probe as control. (B) Floret hybridized with antisense probe. (C)
Transverse section of an anther at meiosis stage hybridized with sense probe as control. (D) Transverse section of an anther at
meiosis stage hybridized with antisense probe (D). m: Microsporangium. t: Tapetum. Bars =100 pm.

increased during anther development (Izhaki
et al., 2002). Similarly, y656d05 was highly
expressed in meiotic anther (Figure 7A) and
strong RNA signal was detected in both pollen
mother cells and the tapetum of anthers (Fig-
ure 8). Therefore, y656d05 is possibly involved in
meiosis. Further functional studies will be needed
to define its function in meiosis.

In summary, in this report we compared gene
expression in seedlings, meiotic and mature
anthers, as well as GAs or JA treated suspension
cells using a cDNA microarray containing about
10 000 rice genes. There were 2155 genes found to
be preferentially expressed in anthers and 47 genes
were differentially expressed in meiotic and mature
anthers. Moreover, 314 genes responded to either
GA; or JA treatment. Among them, 24 GA;- and
82 JA-responsive genes showed significant expres-
sion changes from meiotic anthers to mature
anthers, suggesting that both GAz and JA play a
wide range of roles in rice anther development. We
also examined the expression of gene y656d05 in

detail using RT-PCR and in situ hybridization.
Further functional studies of these genes using
molecular genetic and reverse genetic approach
will help elucidate the mechanism of anther
development.
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