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Abstract

Alternative splicing (AS) is one of the most significant components of the functional complexity of the eukaryote genome, increasing protein
diversity, creating isoforms, and affecting mRNA stability. Recently, whole genome sequences and large microarray data sets have become
available, making data integration feasible and allowing the study of the possible regulatory mechanism of AS in rice (Oryza sativa) by erecting
and testing hypotheses before doing bench studies. We have developed a new strategy and have identified 215 rice genes with alternative
expression isoforms related to insertion and deletion (indel) between subspecies indica and subspecies japonica. We did a case study for
alternative expression isoforms of the rice peroxidase gene LOC_Os06g48030 to investigate possible mechanisms by which indels caused
alternative splicing between the indica and the japonica varieties by mining of array data together with validation by RT-PCR and genome
sequencing analysis. Multiple poly(A) signals were detected in the specific indel region for LOC_Os06g48030. We present a new methodology to
promote more discoveries of potentially indel-caused AS genes in rice, which may serve as the foundation for research into the regulatory

mechanism of alternative expression isoforms between subspecies.
© 2007 Elsevier Inc. All rights reserved.
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Alternative splicing (AS) is an important and common feature
in eukaryotic gene expression [1—11]. There are different types
of AS, such as exon skipping, intron retention, alternative donor
site, alternative acceptor site, alternative terminus, etc. Since
Walter Gilbert proposed AS phenomena in eukaryotes in 1978
[12], more and more genes with different expression isoforms
have been reported, especially from high-throughput sequencing
genome and expressed sequence tag (EST) data [13-22], and
microarray technologies, such as exon junction array and tiling
array, have been used to detect alternative isoforms [23]. To date,
on the basis of genome-wide analysis, about 60% of human
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genes are considered to be AS [3]. In 2006, Wang and Brendel
reported 22% of Arabidopsis genes and 21.2% of rice genes with
AS isoforms identified by comparison between genomic
sequences and EST/cDNA sequences [24].

With the expanding number of alternative isoforms expected
with the increased availability of EST and ¢cDNA data, it is
necessary to investigate populations of AS transcripts and study
the possible mechanisms underlying the generation of AS isoform
diversity. Conventionally, AS is thought to occur within the same
species under different environmental and/or development
conditions. But insertion and deletion (indel) of subspecies may
contribute to the generation of AS isoform diversity during
evolution, leading to expanded populations of AS transcripts in
rice and other organisms. It has been reported that indel of a
genome sequence may lead to AS isoforms. In 1992, Kenneth
R. Luehrsen and Virginia Walbot added a non-intron sequence to
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two maize introns and used a transient expression assay to explore
the impact of inserted sequences on splicing [25]. They reported
that transposable element insertion into or near introns can cause
AS events. Two other groups reported that mobile retrotranspo-
sons can induce AS of the host gene upon insertion [26,27].
Rice (Oryza sativa) is the staple food for almost half of the
world population, and it is a model organism for studies of crop
plants. The entire rice genome determined by high-quality
sequencing is freely available [28—33]. A genome-wide com-
parative analysis was conducted for DNA sequences of two major
cultivated rice subspecies, O. sativa L. ssp. indica and O. sativa L.
ssp. japonica [34,35]. The variations affect gene structures and
may cause intraspecific phenotypic adaptation [36]. The availabil-
ity of public microarray data makes it feasible to use microarray
data mining and a comparative genomics approach for identifying
rice AS possibly due to indel. The rice microarray database
provides a powerful tool with which to identify different rice
gene expression patterns, predict possible gene functions, and
analyze genotyping by data mining. There are two sets of rice
tissue/organ-specific microarray data available in the GEO data
sets, GSE7951 and GSE6893 (http://www.ncbi.nlm.nih.gov/

geo/). These two microarray data sets were compiled for
different research purposes but they used the same platform,
the Affymetrix GeneChip rice genome array (GPL2025).
GSE6893 was generated by Dr. Jitendra P. Khurana’s
laboratory in India and the array samples from indica variety
IR64 were used for identifying the genes expressed differen-
tially during various stages of reproductive development [37].
GSE7951 was generated by Dr. Yongbiao Xue’s laboratory in
China and the array samples from japonica variety Nipponbare
were used for genome-wide gene expression profiling in rice
stigma [38]. These data sets provide a good opportunity for
global comparison of gene expression levels of AS genes
between the two rice subspecies japonica and indica.

We developed a new strategy to do data mining through
Affymetrix microarray data for predicted AS genes with mul-
tiple probe sets that were differentially expressed in indica and
Jjaponica varieties, and searched for possible indel regions
between japonica variety Nipponbare and indica variety 93-11
contigs. Furthermore, to identify possible mechanisms of indel-
caused AS transcripts between indica and japonica varieties,
we conducted a case study for alternative expression isoforms of
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Fig. 1. A scheme for gaining rice genomic information in the region of LOC_0Os06g48030. Rice peroxidase 16 precursor, LOC_0Os06g48030, is located on rice
chromosome 6, from 29,049,770 to 29,054,208 bp in the pseudomolecule. The position of the region is shown in the topmost track. The green bar with a yellow outline
represents the genome region of LOC_Os06g48030 in japonica (Nipponbare), the light blue line with red triangles indicates the indel region between the japonica and
the indica genomes; the red triangles show the locations of poly(A) signals in the indel region. The blue bars represent the contigs of the indica (93-11) genome; contig
001567 has a gap in the genome region of LOC_Os06g48030 compared with the japonica (Nipponbare) genome. The three tracks with blue and white boxes represent
the models of gene LOC_Os06g48030. There are three alternative expression isoforms predicted by the TIGR Web site, LOC_Os06g48030.1, LOC_0s06g48030.2,
and LOC_0Os06g48030.3, and each track indicates the structure of one isoform. The boxes represent the exons and the blue bars represent the coding region. The small
colored boxes represent the positions of the probes in the three probe sets in the Affymetrix GeneChip rice whole genome. Each color indicates one probe set: green
indicates Os.11547.1.S1_s_at, named PS1; purple indicates OsAffy.28164.1.S1_at, named PS2; red indicates OsAffy.28164.2.S1_at, named PS3. The purple lines
connecting purple boxes represent the location of the probe in the exon junction. The arrows beside the japonica (Nipponbare) genome region represent the positions
of primers designed for RT-PCR experiments. The primer pair CS_F and CS_R1 is for RT-PCR of expression corresponding to PS3, with a 305-bp product. The primer
pair CS_F and CS_R2 is for RT-PCR of expression corresponding to PS2, with a 101-bp product. The primer pair FS_F and CS_R2 is for RT-PCR of full-length cDNA
of LOC_0s06g48030.2. The primer pair GS_F and GS_R is for PCR of the indel region between the japonica and the indica genomes, with a 1231-bp product for
Jjaponica and a 213-bp product for indica.
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the rice peroxidase gene LOC_0Os06g48030. Peroxidases are
known to respond to leaf senescence [39] and have a role in
increasing a plant’s defense against pathogens [40]. Genomic
analysis indicated that there is a large indel region between
Nipponbare and BGI 93-11 contigs for LOC_0Os06g48030,
whose two probe sets (OsAffx.28164.1.S1_at and OsAffx.
28164.2.S1_at) are located in/near the indel region. Further
studies using comparative genomics, RT-PCR validation, and
genotyping analysis revealed that AS isoforms of LOC_Os
06248030 associate with indel between the indica and the
Jjaponica varieties. This is the first study to use microarray
data mining and a comparative genomics approach for identi-
fying alternative splicing possibly due to indel between rice
subspecies. We describe a new methodology to predict indel-
related AS genes in rice and other plant species globally. This
new methodology will promote more discoveries in potentially
indel-related AS genes in rice and provide a foundation for
research into the regulatory mechanisms of alternative expres-
sion of isoforms between subspecies.

Results

Identification of alternative expression isoforms possibly caused
by indel within genes, such as LOC_Os06g48030, through
genome analysis and microarray comparison of transcript
profiles between the rice subspecies japonica and indica

In TIGR release version 5 for rice pseudomolecules, 6497
rice AS genes with 10,431 additional gene models were curated
on the basis of the rice EST and full-length cDNA sequences
(http://www.tigr.org/tdb/e2k 1/0sal/expression/alt_spliced.info.
shtml). The rice genome browser (http://www.tigr.org/tigr-scripts/
osal_web/gbrowse/rice/) shows that some of those genes have
indel variations between contigs from Nipponbare versus 93-11,
leading us to ask whether there is alternative splicing possibly due
to indel between these rice subspecies. We took a systematic
approach to identifying transcript variants between the two rice
subspecies by mining microarray data generated from the
hybridization of various tissue RNAs from japonica variety
Nipponbare (GSE7951) and indica variety IR64 (GSE6893). We
mapped the 6498 predicted rice AS genes to about 7504 probe sets
of the Affymetrix GeneChip rice whole genome, which contains
more than 2086 predicted AS genes with multiple probe sets.

Although these two data sets do not have exactly the same
number of tissue/organ types, there are enough common tissue/
organ types, such as root, leaf, seed, and flower, for a sound
comparison. Furthermore, the overall expression levels of

presence/absence in the two cultivars provide relevant data for
the AS analysis. To compare the array data from GSE7951 and
GSE6893, we rescaled the data from GSE7951 and set the mean
target intensity of each array to 100 using Affymetrix GCOS
software, and we used the Z-score transformation normalization
method to compare expression levels from the two microarray
data sets. In total, we found 215 candidate genes through
investigation of predicted AS genes with transcript variants and
indel between japonica and indica subspecies of rice (Supple-
mental Table 1). Some of them have probe sets located exactly in
the indel regions between contigs from Nipponbare versus 93-11
and match to different AS isoforms, such as LOC_Os06g48030,
LOC_0s04g49757, and LOC_Os01g49529.

To identify possible mechanisms whereby indel caused AS
transcripts between the indica and the japonica varieties, we used
the rice peroxidase gene LOC_0Os06248030 as an example for a
case study. Fig. 1 shows the scheme for the genome analysis of
LOC_0s06g48030, including comparison of genomic regions in
Jjaponica and indica with highlighted indel and poly(A) signals
and a map of three different isoforms that include predicted introns
and exons. In the 3’ end of LOC_Os06g48030 there is a large gap
in indica variety 93-11. Further analysis of this indel region
indicates the presence of multiple poly(A) signals. Three gene
models predicted by TIGR for LOC_0Os06g48030 are shown in
Fig. 1: LOC_0s06g48030.1 (isoform 1), LOC_0s06g48030.2
(isoform 2), and LOC_0Os06g48030.3 (isoform 3).

Fig. 1 also indicates the locations of three probe sets for
LOC_0s06g48030, including Os.11547.1.S1_s_at (PS1), Os
Affx.28164.1.S1_at (PS2), and OsAffx.28164.2.S1_at (PS3).
PS3 locates mainly in the indel region of LOC_Os06g48030.
PS1 locates in all three isoforms. PS2 expands the end sequence
region of isoform 2. PS3 locates in the end of both isoforms 1
and 3, four probes of PS3 partially hit isoform 2, and seven
other probes are completely outside the isoform 2 region. Fig. 2
shows the results of the comparison for three probe sets of
LOC_0s06g48030 in different tissues between IR64 and Nip-
ponbare. All the tissue expression data from GSE7951 and
GSE6893 for each probe set are given in one histogram, with
the dark bar (left-hand side) for japonica variety Nipponbare
and the gray bar (right-hand side) for the indica variety IR64.
Both Nipponbare and IR64 bars are shown in PS1 (Fig. 2A).
Interestingly, the dark bar is prominent in PS3 (Fig. 2C) but
almost invisible in PS2 (Fig. 2B), while the gray bar (IR64) has
arelatively low level in PS3 (Fig. 2C) but significant expression
in PS2 (Fig. 2B). As shown in Figs. 2A, B, and C, different
LOC_0s06g48030 isoforms are expressed differentially in
tissues/organs from indica variety IR64 and japonica variety

Fig. 2. Comparison of GeneChip expression data between IR64 (indica) and Nipponbare ( japonica) for three probe sets of LOC_Os06g48030 in different tissues. For
comparison, the mean target intensity of each array was arbitrarily set to 100. The dark bar (left-hand side) stands for the expression levels of the Nipponbare variety,
including the following tissues: triplicate for stigma (J-St) and ovary (J-Ov), suspension cell (J-Cell), shoot (J-Sh), root (J-Rt), anther (J-An), 10-day embryo after
pollination (J-10EM), 10-day endosperm after pollination (J-10EN), and 5-day seed after pollination (J-5DAP). The gray bar (right-hand side) stands for the expression
levels from the IR64 variety, including the following tissues with triplicate experiments: 7-day seedling root (I-Rt), mature leaf (I-ML), Y leaf (I-YL), SAM (I-SAM),
young inflorescence (P1, 0-3 cm (I-P1); P2, 3—5 cm (I-P2); P3, 5-10 cm (I-P3); P4, 10—15 cm (I-P4); P5, 15-22 cm (I-P5); and P6, 22—30 cm (I-P6)), and seed (S1,
0-2 dap (I-S1); S2, 3—4 dap (I-S2); S3, 5-10 dap (I-S3); S4, 11-20 dap (I-S4); S5, 21-29 dap (I-S5)). (A) Expression levels of the probe set Os.11547.1.S1_s_at (PS1)
from IR64 and Nipponbare. (B) Expression levels of probe set OsAffy.28164.1.S1_at (PS2) from IR64 and Nipponbare. (C) Expression levels of OsAffy.28164.2.
S1_at (PS3) from IR64 and Nipponbare. (D) Expression levels of three probe sets under stress treatment. Raw data from the GEO database: GSE7951 (Nipponbare),
GSE6893 (IR64), and GSE6901 (IR64). SAM, shoot apical meristem; dap, days after pollination.
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Nipponbare, especially in root and reproductive tissue such as trol or stress conditions (Fig. 2D). Therefore, the different
stigma and panicles. In addition, the indica variety IR64 stress expression patterns for probe sets of the rice peroxidase gene
treatment array data show that PS1 and PS2 were up-regulated LOC_0s06g48030 indicate that cDNA sequence variance and
under drought stress and induced slightly under salt and cold  alternative expression isoforms exist between the japonica and
stress; PS3 was almost completely absent, irrespective of con- indica varieties.
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RT-PCR validation for alternative expression isoforms of
LOC_0Os06g48030

To validate further the alternative expression patterns in
different probe sets of the peroxidase gene LOC_Os06g48030,
we carried out RT-PCR analysis of gene expression under cold
stress using the specific primer pairs shown in Fig. 1: CS_F and
CS_R1 (validating PS3) and CS_F and CS_R2 (validating
PS2). As shown in Fig. 3A, the CS_1 primer set revealed one
band (about 300 bp) in Nipponbare, but none in 93-11; and the
CS_2 primer set reproduced the product (about 100 bp) in 93-11
and not in Nipponbare. Fig. 3A shows that the RT-PCR
expression patterns were similar to those of the probe sets PS3
and PS2 in the microarray.

On the basis of the array and RT-PCR results, we undertook
further analysis of the gene structure of LOC_0Os06g48030. Due
to limited information about the full-length cDNA sequence of
LOC_0s06g48030 in indica, an additional primer pair FS_F
and CS_R2 was designed (Fig. 1). The PCR product was
reproduced by primer set FS_F and CS_R2 in indica variety 93-
11 but not in japonica variety Nipponbare (Fig. 3B). We cloned
the cDNA with 1347 bp and the sequencing results have been
submitted to NCBI and are given in the supplemental data. The
cloned indica cDNA sequence was aligned with full-length
cDNA sequences published by the Japanese group and given in
Fig. 3C. Variation between indica and japonica is located in the

A Japonica Nipponbare

3’ end of LOC_0s06g48030. Alternative isoform 2 may exist
only in indica varieties, and isoforms 1 and 3 exist in japonica
varieties.

Genotyping of LOC_Os06g48030 between indica and japonica
varieties

To investigate the potential cause of the alternative ex-
pression patterns for the two probe sets of LOC_0Os06g48030
(PS2 and PS3) in japonica and indica varieties, we conducted
further genotyping analysis to establish whether any indel could
be detected between japonica and indica varieties.

In Fig. 1, an indel was analyzed in the genome regions
between Nipponbare (japonica) and 93-11 (indica), and there is
large gap in the 3’ end of LOC_Os06248030 in the indica
variety 93-11. The primer pair GS_F and GS_R was designed
for genome sequence analysis (Fig. 1). PCR was conducted
using genomic DNAs isolated from five indica varieties (93-11,
1IR24, 03A-11, 03A-9, and Zhongyoul3) and five japonica
varieties (Nipponbare, Hual, 746, Yunfeng7, and Xiangjing-
nuo). Fig. 4 shows that the size of the PCR products from
Japonica varieties is about 1200 bp, significantly larger than
those from indica varieties (about 200 bp), suggesting there is a
deletion in 93-11. To confirm the presence of indels in the gene
LOC_0s06g48030 between indica and japonica subspecies,
we cloned the PCR products for sequencing, which showed that
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Fig. 3. RT-PCR validation for different probe sets and full-length cDNA comparison for LOC_Os06g48030 between indica and japonica varieties. (A) RT-PCR results
under low temperature (4°C) in 93-11 (indica variety) and Nipponbare ( japonica variety) for CS_1 (PCR product using CS_F and CS_R1) and CS_2 (PCR product
using CS_F and CS_R2). Actin was used as a control. The RT-PCR samples are lanes 1,9311—0h; 2,9311—12 h; 3,9311—24 h; 4,9311—48 h; 5, Nipponbare—0 h;
6, Nipponbare—12 h; 7, Nipponbare—24 h; 8, Nipponbare—48 h. The CS_1 primer set could amplify and detect one band (about 300 bp) in Nipponbare—oO0 h,
Nipponbare—12 h, and Nipponbare—24 h, but not in 93-11. The CS_2 primer set could reproduce the product (about 100 bp) in 93-11, but not in Nipponbare. (B) RT-
PCR result for FS (PCR product using primers FS_F and CS_R?2). In the indica variety, the PCR product could be amplified with the F'S primer set and produced cDNA
0f 93-11 and revealed one band. In the japonica variety, PCR could not be amplified with the FS primer set and there is no band in Nipponbare. (C) Full-length cDNA
sequence comparison for LOC_Os06g48030 between indica and japonica. The RT-PCR product FS cloned and sequenced was compared to full-length cDNA

sequences published by the Japanese group.
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Fig. 4. The analysis of the indel in LOC_Os06g48030 between the indica and
the japonica varieties. PCR analysis using genomic DNA of the indica and
Japonica varieties is presented. Lanes 1-5, the PCR product using the genomic
DNA of japonica varieties Nipponbare, Hual, 746, Yunfeng7, and Xiangjing-
nuo, respectively; lanes 610, the PCR product using the genomic DNA of the
indica varieties 93-11, IR24, 03A-11, 03A-9, and Zhongyoul3, respectively.
DL2000 (Invitrogen) was used as a marker for the size of PCR product.

there is a 1017-bp fragment deleted from 93-11 (the sequencing
and BLASTN results are given as supplemental data). We have
submitted this specific region to NCBI.

Discussion

Alternative splicing is one of the most significant components
of the complexity of eukaryote genomes, increasing protein
diversity, creating a few isoforms, and affecting mRNA stability.
Unlike conventional thought that AS happens in the same species
under different development conditions or environmental stresses,
we propose another hypothesis, that indels of subspecies may
contribute to generating AS isoform diversity during evolution,
leading to expanded populations of AS transcripts in rice and other
organisms. Recently, whole genome sequences and large micro-
array data sets have become available, giving us the opportunity to
undertake data integration and study the possible regulatory
mechanism of rice AS by erecting and testing hypotheses before
doing bench studies. We developed a new strategy, through
genome-wide investigation of indels and microarray-based
comparison of transcript profiles between japonica and indica
subspecies of rice, and identified 215 rice candidate genes. In this

study, we use the peroxidase gene LOC_Os06g48030 as an
example to study the possible regulatory mechanism of alternative
expression of isoforms between subspecies.

Microarray probe set PS1 of LOC_Os06g48030 hits in three
isoforms and was expressed in both IR64 and Nipponbare; PS3
hits isoforms 1 and 3 and showed significantly lower expression
in IR64, while PS2 hits isoform 2 and is expressed only in IR64
(Figs. 1 and 2).

During microarray analysis, we asked why probe set PS3 still
has some expression in the indica variety shown in Fig. 2C. On
the basis of sequence analysis, although there are 157
peroxidase genes in the rice genome, there should be no
cross-hybridization between the PS3 probe sequence and any
other rice peroxidase gene. We further investigated all 11 probes
for PS3 and found that 4 probes of PS3 partly hit isoform 2 (Fig.
1); the other 7 probes of PS3 have multiple hits in other genes,
although they are not peroxidases. This might be the reason the
array intensity of PS3 shows slight expression in the indica
variety and may be caused by cross-hybridization. Our RT-PCR
analysis confirmed the array results (Fig. 3). The indel regions
between indica variety 93-11 and japonica variety Nipponbare
were identified by the TIGR genome browser and confirmed by
our genotyping analysis using PCR amplification and genome
sequencing for genome DNA samples from indica and japo-
nica varieties (Fig. 4). The gene structure of LOC_Os06g48030
in indica and japonica was analyzed by comparing our cloned
indica full-length ¢cDNA with the published japonica cDNA
sequence. It is likely that isoform 2 came from indica varieties,
and isoforms 1 and 3 may have come from japonica varieties
(Fig. 1).

The biological function of alternative splicing isoforms of
LOC_0s06g48030 remains an enigma. The microarray data
provide clues suggesting that LOC_0s06g48030 has an
important role in plant development and stress tolerance. All
three probe sets of LOC_Os06g48030 are highly expressed in
root and reproductive tissues (stigma and panicle) (Fig. 2): PS1
is expressed significantly in the stigma of Nipponbare and in the
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Fig. 5. A possible model for indel-caused alternative expression isoforms in the indica and japonica varieties. The model describes the transcription process from
genomic DNA to mRNA in the indica and japonica varieties. (A) In the japonica varieties there is a 1017-bp region that contains multiple poly(A) signals (the light
blue bar with red triangles). The transcription terminated in this region, and then the pre-mRNA was converted into two isoforms, LOC_0s06g48030.1 and
LOC_0s06g48030.3, through an mRNA splicing process. (B) In the indica varieties, without the 1017-bp in genomic DNA (gray broken line), the transcription went
farther and the pre-mRNA was converted into isoform LOC_0Os06g48030.2, which contains a small exon in the 3’ end.



192 F Liu et al. / Genomics 91 (2008) 186—194

panicle of IR64, PS2 is expressed preferentially in the panicle of
IR64, and PS3 is expressed preferentially in the stigma of
Nipponbare. The IR64 stress treatment array data show that PS1
and PS2 are up-regulated under drought stress and induced
slightly under salt and cold stress (Fig. 2D). There may be cross
talk between drought stress and pollination for the peroxidase
gene LOC_0Os06g48030.

It is very puzzling, however, that LOC_Os06248030 in japo-
nica variety Nipponbare does not have isoform 2 and has a larger
cDNA sequence compared to that of indica varieties. Here, we
propose a potential model (Fig. 5) in which the alternative
expression of different isoforms of LOC_Os06g48030 may be due
to an indel(s) between indica and japonica varieties. In our model,
the transcription process from genomic DNA to mRNA may be
affected by the indel between indica and japonica varieties. In
Jjaponica varieties (Fig. 5A), there is a 1017-bp insertion region
that contains multiple poly(A) signals; the analysis of poly(A)
signals for the insertion sequence is given as supplemental
material and this sequence has been submitted to NCBI. When the
transcription terminates in this region, the pre-mRNA converts
into isoforms 1 and 3 through an mRNA splicing process. This AS
model is supported by two Nipponbare full-length cDNA
sequences available in the KOME database (AK064918.1 and
AK104754.1) (Fig. 3C). It is known that the 3’ ends of mRNAs
terminate with a poly(A) tail, and poly(A) signals such as the
AAUAAA motif have a very important role during posttranscrip-
tional modification directed by sequence features present in the
3’ untranslated region [42]. In agreement with the literature
[43,44], our results indicate that the mechanism for AS forms 1
and 3 may be related to both alternative splicing and alternative
polyadenylation, due to the existence of poly(A) signals in the
Japonica insertion region. For indica varieties (Fig. 5SB), without
the 1017-bp region in the genomic DNA, the transcription extends
farther and the pre-mRNA converts into isoform 2, which contains
the small exon piece in its 3’ end. We cloned full-length cDNA
from indica variety 93-11 and confirmed our predicted AS
(Fig. 3C). Very interestingly, the indel region is conserved in both
Jjaponica and indica varieties (Fig. 4). Here, we propose that
isoform 2 of LOC_0Os06g48030 exists in indica and may be the
original form in evolution, and the 1017-bp DNA fragment with
multiple poly(A) signals may have been inserted into japonica
later, leading to isoforms 1 and 3. The multiple poly(A) signals in
the indel region may be the key reason for generating the different
isoforms of LOC_0s06g48030 between indica and japonica
varieties. We found this sequence only in the rice genome and with
no hit in any other species from the NCBI sequence databases.
Further study of the origin of this sequence and its possible
molecular function during rice evolution may be necessary.

In addition to LOC_0s06g48030, isoform 2 of LOC_Os04g
49757 (Supplemental Fig. 1) and isoform 4 of LOC_Os01g49529
(Supplemental Fig. 2) were identified with transcript variants
between indica and japonica varieties using the same approach.
On the basis of the genome sequence analysis, it seems that the AS
isoforms may be due to an indel(s) between rice subspecies, but
the mechanisms may be completely different. In addition, the
Affymetrix whole genome array was not designed specifically for
studying indel-based alternative splicing, so there is the

possibility that the probe sets were not matched perfectly in the
isoform regions and in the indel regions. Further bench work is
needed for studying the possible mechanisms.

This study provides a new approach to identifying AS between
subspecies. This is the first application of microarray data mining
and comparative genomics for identifying AS possibly due to
indel between the rice subspecies indica and japonica. It provides
a foundation for the development of a new microarray chip
designed specifically for identification of AS isoforms between
rice subspecies due to indels in a high-throughput fashion. In
addition, AS candidate genes such as LOC_Os06g48030 could be
new markers for identifying indica and japonica varieties
(Fig. 4), which will have significant implications in future rice
breeding. This new methodology will allow more discoveries in
potentially indel-caused AS transcripts in rice and in other
species. Our research will be very useful for the identification of
the regulatory mechanism underlying alternative expression of
isoforms between subspecies.

Materials and methods

Plant materials

DNA isolation

Fresh leaves from various cultivars (indica cultivars 93-11, IR24, 03A-11,
03A-9, and Zhongyoul3; japonica cultivars Nipponbare, Hual, 746, Yunfeng7,
and Xiangjingnuo) were harvested from rice plants grown under natural
conditions.

RNA isolation

Seeds of two rice cultivars (93-11 and Nipponbare) were surface-sterilized in
5% (w/v) sodium hypochlorite for 20 min and then washed in distilled water three
or four times. The seeds were placed onto water-saturated Whatman paper for 1 day
at 37°C to allow germination. The seedlings were transferred to a greenhouse (28°C
day/25°C night, 12 h light/12 h dark, and 83% relative humidity). About 1 week
after germination, the temperature was changed to 4—5°C, and budburst and root
tissues were harvested after 12, 24, and 48 h cold treatment, frozen in liquid
nitrogen, and stored at —80°C. Control plants were harvested at the same time.

DNA extraction and PCR analysis

Fresh leaves were collected and ground in liquid nitrogen. DNA was extracted
from the ground tissues by the CTAB method [41]. Genome region primer sets
(GS_F, 5’-CATGTTCACAAGTCCACCGCGC-3’"; GS_R, 5'-CAAAAAG-
GAATGGCATATGTATGGGA-3’) were designed according to the genome
sequence of Nipponbare. A 25-pl reaction mixture was composed of 30 ng of
total DNA, 10 mM Tris—HCI (pH 9.0), 50 mM MgCl,, 0.1% (v/v) Triton X-100,
2 puM each primer, and 1 unit of Taq DNA polymerase (Promega). Amplification
for the initial denaturing step was for 3 min at 94°C, followed by 35 cycles of 1 min
at 94°C, 1 min at 58°C, 2 min at 72°C, with a final extension for 10 min at 72°C.
The PCR product was separated by electrophoresis in a 1.2% (w/v) agarose gel.

RNA isolation and RT-PCR

All seedling samples from varieties 93-11 and Nipponbare were homoge-
nized in liquid nitrogen before isolation of the RNA. Total RNA was isolated
using TRIzol reagent (Invitrogen, CA, USA) and purified using Qiagen RNeasy
columns (Qiagen, Hilden, Germany). Reverse transcription was performed
using Moloney murine leukemia virus (M-MLV; Invitrogen). We heated 10-pl
samples containing 2 pug of total RNA and 20 pmol of random hexamers
(Invitrogen) at 70°C for 2 min to denature the RNA, and then chilled the samples
on ice for 2 min. We added reaction buffer and M-MLV to a total volume of
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20 pl containing 500 pM dNTPs, 50 mM Tris—HCI (pH 8.3), 75 mM KCl, 3 mM
MgCl,, 5 mM dithiothreitol, 200 units of M-MLV, and 20 pmol random
hexamers. The samples were then heated at 42°C for 1.5 h. The cDNA samples
were diluted to 8 ng/pl. The specific primer pairs CS_1 (CS_F and CS_R1),
CS_2 (CS_F and CS_R2), and FS (FS_F and CS_R2) were designed by
Primer3, and the primer pairs were CS_F, 5'-CCTACCCATGTGATATGATA-
GAAGG-3’; CS_R1, 5-AGACGAGTCTAGAGTTCATATAGG-3’; CS_R2,
5’-CAAAAAGGAATGGCATATGTATGGGA-3'; and FS_F, 5'-ATGGGGCA-
GAGGAGGAGGTC-3'.

The amplification of actin was used as an internal control to normalize all
data (ActinF, 5'-TATGGTCAAGGCTGGGTTCG-3’; ActinR, 5-CCATGCTC-
GATGGGGTACTT-3).

Array data reanalysis

We downloaded the CEL files of each experiment in the three microarray
data sets (GSE7951 generated by the Chinese group and GSE6893 and
GSE6901 generated by the Indian group) from the GEO Web site (http:/www.
ncbi.nlm.nih.gov/geo/). There are 70 chip data (13 from GSE7951, 45 from
GSE6893, and 12 from GSE6901). All CEL files were reprocessed by
Affymetrix GCOS software to produce the CHP file, and the target mean value
was rescaled as 100 for each chip.

To map the probe set ID to the locus ID in the rice genome, the consensus
sequence of each probe set was compared by BLAST (Basic Local Alignment
and Search Tool) against the newest release of TIGR rice genome, version 5. The
cutoff E-value was set as 1 x 10~ 2°. Within the 57,195 designed probe sets in the
Affymetrix rice genome array, there are 52,697 probe sets mapped to rice genes
in TIGR rice pseudomolecules.

Z-score transformation was used to identify the differential expression
features between the indica and the japonica cultivars. The Z scores were
calculated by taking the difference between the average expression level of
Japonica tissues (u;) and the average expression level of indica tissues (u;)
divided by the standard deviation (SD;) of the expression levels of indica tissues
(for Z; i, ;) or by the standard deviation (SD;) of the expression levels of ja-
ponica tissues (for Z; j, j) using the following equations:

Zi_in_i = (4 — 1) /SD;,
Zi_in_j = (W — 1)/SD;.

The p value was calculated on the basis of the Z score, with p <0.05 set as
the level of statistical significance.

For gene LOC_0s06g48030, we define isoform 1 as LOC_Os06g48030.1,
isoform 2 as LOC_0Os06g48030.2, and isoform 3 as LOC_0Os06g48030.3; for
three probe sets of LOC_Os06g48030, we define PS1 for probe set Os.11547.1.
S1_s_at, PS2 for OsAffx.28164.1.S1_at, and PS3 for OsAffx.28164.2.S1_at.

Sequence analysis

The sequencing results were assembled using SeqMan from the DNAstar
package. Sequence alignment was done by MegAlign from the DNAStar
package and bl2seq from NCBI. The polyadenylation signal was identified by
the PLACE database (http://www.dna.affrc.go.jp/PLACE/).
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